Incompletely and Imprecisely Speaking:
Using Dynamic Ontologies for Representing and
Retrieving Information®

Chung Hee Hwang
hwang@mcc.com
InfoSleuth™ Group
Microelectronics & Computer Technology Corp. (MCC)
3500 West Balcones Center Drive
Austin, Texas 78759-5398, U. S. A.

June 18, 1999

Abstract

We report on an approach to representation and retrieval of information from large
textual databases. OQur approach is based on dynamic ontologies that are automatically
constructed from textual data by a new method combining techniques from knowledge
representation, natural language processing, and machine learning. The method learns
concepts automatically from documents, and uses them to build domain-specific ontologies
and to organize the information contained in the documents. The ontologies generated
are dynamic in that they are constantly updated and expanded as new documents are
added, requiring minimal supervision from domain experts. Information contained in
the documents are efficiently retrieved based on concepts in the ontology, allowing for
precision and completeness to be traded off. A prototype implementation has been very
encouraging.
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1 Background

Our access to data continues to grow exponentially, in terms of both intranets and in-
ternets. The enormous growth in the number of on-line textual information sources brings
us to a vast amount of information waiting to be discovered, generating intense interest in
research on efficient representation and retrieval of textual information. In addition, the
database community is becoming increasingly interested in non-conventional types of data;
timely access to textual information has become more and more important as well.

At MCC, the InfoSleuth™ project [Bayardo et al. 1996, Fowler et al. 1999, Nodine et
al. 1999] aims to retrieve and process information in an ever-changing network of informa-
tion sources. Recent technologies such as internetworking and the World Wide Web have
significantly expanded the type, availability and volume of data available to an information
management system. However, most of the current Web technologies rely on keyword-based
search engines and are incapable of accessing information based on concepts. InfoSleuth
integrates new technological developments such as agent technology, domain ontologies, bro-
kerage, and distributed computing, in support of mediated interoperation of data and services
in a dynamic and open environment. Since there is minimal structure in the data on the World
Wide Web and this structure usually bears little relationship to the semantics, there can be
no static mapping of concepts to structured data sets. Consequently, querying is mostly
delegated to search engines that dynamically locate relevant information based on keywords.

InfoSleuth views an information source at the level of relevant semantic concepts and aims
to deal with possibly incomplete information. Of InfoSleuth technologies, the most relevant
for the topic of this paper is its use of domain models, i.e., ontologies. The semantics of
information from diverse sources is best captured by ontologies because they give a concise,
uniform and declarative description of the information, independent of the underlying syntac-
tic representation or the conceptual models embedded in various information sources. Domain
models widen the accessibility of information by allowing multiple ontologies belonging to dif-
ferent user groups. An ontology is typically designed to perform a particular kind of task in a
specific domain. Thus, it could mean different things for different people, e.g., from relational
database schemas to lexical entries in a dictionary. As our goal is to extract and retrieve
information from unstructured textual data, our notion of ontology is broader than that of
database schemas. Our first effort trying to model and query textual data using domain on-
tologies within the InfoSleuth environment is described in [Kashyap and Rusinkiewicz 1997].
This paper discusses how domain ontologies can be constructed and how concepts in the
ontology can be mapped to the underlying textual data and the role of our ontologies in
information retrieval.

2 Lessons Learned from KR, NLP, IE and IR

The similar goal of mapping ontological concepts to underlying texts have been pursued by the
information retrieval and extraction (IR/IE) communities (see, e.g., [MUC-6, TREC-6]). One
approach commonly taken in IE is to completely analyze texts using KR and NLP techniques.



The result is collected in a relational database-like repository for future retrieval.

A quick review of KR uncovers a host of representations, from standard predicate calculus
to description logic (e.g., [Schmolze and Lipkis 1983]) to semantic nets (e.g., [Shapiro 1979])
to discourse representation theory [Kamp 1981] to situational semantics [Barwise and Perry
1983]. They are all different with respect to their expressive power, ease or efficiency of
reasoning, and the rigor of semantic underpinnings. For instance, Episodic Logic [Hwang
and Schubert 1993b] is an extended first-order logic that is very expressive, formally in-
terpretable, and easily derived from surface utterances, yet allows efficient inference. The
EPILOG inference engine [Schaeffer et al. 1995], based on Episodic Logic, makes quite com-
plex inferences, e.g., spontaneous input-driven inferences or inferences needed for question-
answering, with narrative texts [Schubert and Hwang 1999], utterances from the TRAINS do-
main [Traum et al. 1996], or telex reports for aircraft mechanical problems in the ARMS
project [Namioka et al. 1992]. However, the same kind of representation may not be appro-
priate for the vast amount of texts we face on the internet or other textual databases.

Insisting on in-depth analysis and an exact, complete match with the current state of the
art is practically impossible. Also, there are hard problems with any approach to information
extraction that adopts deep linguistic analysis: current NLP techniques are not completely
satisfactory, neither sufficiently robust nor fast. Development in the area of syntactic analysis
has made it possible to parse NL sentences reasonably quickly, particularly with an empirical
approach using statistics and/or learning. However, most of the currently available parsers
still cannot choose the best parses consistently. Semantics and discourse analysis are even
more difficult areas. Full understanding based on inferences is currently not practical for any
real-time application.

At the other extreme is keyword search against the raw data. This has the advantage of
not having to analyze texts and not having to have any particular representation, but has
obvious problems: the same concept may be represented in various ways using different terms.

Information retrieval, or the access of information from diverse sources relevant to a par-
ticular query, is an area with many applications, including on-line access (such as the use of
search engines like Lycos) and data-mining and knowledge discovery (as in [Unruh et al. 1999]).
Typical technology to address IR includes something akin to regular expression matching into
large bodies of text. However, without knowing ahead of time the particular keywords authors
will have used to describe a concept, the match will either overgenerate (provide information
that does not meet the questioner’s needs) or undergenerate (miss information that is rele-
vant). In [Hwang 1998], we discuss our strategy to attack this problem. Basically, one will
have to limit oneself to superficial understanding initially and then concentrate on portions
of documents that are likely to contain answers.

Then, what kind of superficial understanding would be sufficient? What kind of concepts
need to be understood and represented, and using what representation? Representation and
retrieval are two inseparable sides of a coin, each strongly dependent on the other. After all, it
is the choice of the “subjects” of representation which determines how readily we can capture
the content of documents, how easily we can retrieve answers for the queries, and how accurate
and precise the answers are going to be. Our answer for this is the automatic generation



of ontologies and modularization of the knowledge base. We use “simple” natural language
processing and machine learning techniques to induce the ontologies specific to the application
domain, reducing the amount of subsequent “full” linguistic analysis or human intervention
and expertise required for building large knowledge bases. The ontology is organized in simple
hierarchies, separating the inheritance type hierarchies from the rest of the knowledge, thus
accelerating the reasoning process (e.g., with a specialized hierarchy reasoner) and reducing
the complexity involved in ontology maintenance.

3 Ontologies Revisited

Much attention has been paid to ontologies recently by both AI, NLP and database commu-
nities. The EL ontology [Hwang and Schubert 1993a] is an example of the kind of ontologies
developed for AT and NLP. It is a very liberal ontology and has all the machinery one needs
to express various concepts including kinds, ideas, facts and events, and also has an infer-
ence engine capable of making complex inference efficiently. However, someone still needs to
construct the ontology and knowledge base for a particular task domain.

An example of an organized semantic base is Cyc(#) [Lenat 1995], the construction of
which originally started for common-sense reasoning. Despite its broad coverage however, its
ontology and knowledge may not be adequate for specialized domains. It still requires new
terms and concepts be added when faced with a new domain. Also, the costs involved in the
creation of Cyc are legendary and could be an impediment to replication at a deep level for
any particular task area. Moreover, in an undertaking like Cyc, there can be a significant
delay between a new concept’s use and its addition to the ontology because an expert must be
involved in concept creation. This can be problematic for a number of fields with a continuous
flow of novel ideas and techniques, such as computer science.

Constructing an ontology that is sufficient for all purposes and domains is indeed an
impossible task. Furthermore, in this rapidly changing world, it may not even be desirable
to build a comprehensive, stable ontology. Then what are the criteria we should consider in
constructing an ontology? We list below some of the desiderata we perceive for large-scale
ontologies. Although we list them point by point for the sake of discussion, it should be clear
that they are largely interdependent.

e Open and dynamic. To adapt to the changes and new developments in a domain, an
ontology should be open and dynamic both algorithmically and structurally for easy
construction and modification. Ideally, the system should be automated, capable of
“creating” concepts on its own with minimal help from a human and with minimum
time delay.

e Scalable and interoperable. An ontology should be easily scaled to a wider domain and
adapt itself to new requirements. It should also be simple to merge multiple ontologies
into one; this is especially important in a distributed environment such as InfoSleuth.
Integration of ontologies requires aligning the concepts from each existing ontology,



which could become a daunting task if the ontologies have different conceptual tax-
onomies. This process could be considerably streamlined if the structure of ontologies
is kept simple and clean.

e FEasily maintained. It should be easy to keep ontologies up-to-date. Ontologies that are
not easily maintained or do not scale will be short-lived. Again, it is important that
ontologies have a simple, clean structure as well as being modular. They should also be
easy for humans to inspect.

e Semantically consistent. The representation used by an ontology as well as the relations
connecting the concepts in the ontology should have sound semantic underpinnings to
assure semantic coherence.

e Context independent. It is desirable not to include context-charged or indexical terms
or “vague” predicates in the ontology.? In database applications dealing with structured
information, context dependent terms may be less of a problem (e.g., see [Jannink et al.
1998] for discussion on encapsulation). For ontologies dealing with large-scale, unstruc-
tured data sources, it is risky to include context sensitive terms. It is not practical to
specify context-discharging axioms and compile de-indexing rules since such knowledge
is usually “hidden” in the text, requiring deep linguistic analysis to make them explicit.
Also, with context dependent terms in the ontology, integration of multiple ontologies
would be a lot more complicated; as the scope of ontology is widened, the context will
change.

What we wish to address in the rest of this paper is, how we create a useful ontology for the
purposes of representing and retrieving information, minimizing the cost of initial creation,
adapting to the concepts that are specific to a particular domain, and allowing for novel
concepts to be added with minimum intervention and delay. The costs involved in generating
ontologies by hand may be considerable. To reduce this cost will allow for better search
of concepts online, relevant to an inquisitor, hence improving overall productivity within an
organization. Because information content changes constantly as new things are discovered in
the actual world, we need to make our system capable of detecting new ideas and developments
when they are mentioned in texts, letting them be immediately searchable without the cost
of additional ontological authorship.

4 Automatic Construction of Ontologies: How It Works

As part of on-going research at MCC, we have been developing a method to automatically
construct an ontology from textual databases. There are two issues involved: where and how
to get the ontology, and how to map concepts to documents and vice versa. Our approach is
as follows. We let human experts provide the system with a small number of seedwords that

2«Wide” is vague, whereas “42-inch” isn’t; “last year” is indexical, while “year 1998” is not
(see [Hwang and Schubert 1994]).



represent high-level concepts. The system then processes the incoming documents, extracting
phrases that involve seedwords, generates corresponding concept terms, and places them in
the “right” place in the ontology. At the same time, it collects candidates for seedwords
for the next round of processing. The iteration continues for a predefined number of times.
As a simple example, suppose we are interested in the technology related to images and
their display techniques. Given seedwords display and image and a set of documents in the
general science and technology area, the system automatically learns the following concepts
and constructs a hierarchical ontology (the root concept is omitted).

display
field emission display
diamond field emission display
flat panel display
* display panel
*display panel substrate
image
video image
*video image retrieval
*multiaccess video image retrieval server

The method considers only those sentences that involve seedwords, in particular, noun
phrases such as “flat panel display” or “display on a flat panel.” Several kinds of relations
are extracted: is-a subclass relation (e.g., display—flat panel display), part-of (e.g., TV —
TV screen), manufactured-by or owned-by (e.g., GE—GE image processing software), etc.
The is-a subclass relation between concepts is usually clear, but other relations aren’t and
need further disambiguation. Instead of trying to disambiguate them however, we use an
“under-specified” predicate assoc-with (associated-with) as a grab bag of all the relations
other than is-a. The concepts marked with ‘*’ in the above hierarchy are in assoc-with
relation to their parents (assoc-with is a bidirectional relation).

The distinction between is-a and assoc-with relations is based on a linguistic property
of noun compounds. When two nominals form a compound, the second one is the head of the
compound and the first one is a modifier. For instance, in ‘video image’, ‘image’ is the head
noun and ‘video’ is a modifier. Although the exact nature of specification due to modifier
‘video’ may not be immediately clear at the time of ontology construction, it can be reliably
asserted that video image is a kind (i.e., subclass) of image. The relation between video and
video image is more subtle, but it is obvious that there is some kind of association between
the two concepts.

Between each round of iteration, we involve a human “coach” to ascertain that the concept
augmentation is, on the whole, correct and useful. I.e., a human expert will prune the ontology
constructed and check whether the seedwords suggested by the machine make sense. For
instance, field emission display in the above is actually a subclass of flat panel display, and
the correction is provided by a human expert. As for seedwords for the next round of concept
learning, the method will “correctly” suggest flat panel and video. The revised part of the
ontology would then look like the following.



display
flat panel display
field emission display
diamond field emission display
*display panel
*display panel substrate

As more documents arrive, the system expands the ontology with new concepts it learns
from the new documents, alerting the human experts of the new concepts® and how they
occur in the source documents. This “discover-and-alert” is very important, and is a novel
feature of our method. Since the construction of ontology is lexically driven, extending or
merging ontologies is also straightforward as one can see. Note that ontology construction is
easily distributed over various time periods and over various sites.

Another interesting feature of our approach is that the method may also discover some of
the attributes associated with certain concepts. For instance, from the phrases shown below,
the method may discover that objects of class display have attributes of physical dimensions
or number of pixels and might even try to learn the range of their possible values.

17.5 Kg display

1.5-cm thick 12-inch display
42-inch wide-screen display
352x288-pixel liquid crystal display

Since the ontology is organized as hierarchies, attributes are automatically inherited following
is-a links.

While constructing the ontology, our method also indexes documents for future retrieval,
optionally saving the results in a relational database (e.g., in a table with attributes document
and set-of-concepts).* In addition, it collects “context lines” for each concept generated,
showing how the concept was used in the text, as well as frequency and co-occurrence statistics
for word association discovery and data mining (this will be the focus of our future work).

Space limitations prevent a detailed description of various aspects of the algorithm, but we
reemphasize the crucial features of our ontology: its simplicity in mapping information in the
documents to concepts and potential retrieval of concepts that are yet-unknown to the user at
the time of query. The method combines computational linguistics knowledge and techniques
with machine learning techniques to avoid time-consuming, detailed syntactic/semantic anal-
ysis. Instead, it uses simple part-of-speech (POS) tagging to support superficial syntactic
analysis. As any corpus-based approach, the more data we have the more reliable results we
will get.

3This amounts to computing a set difference.
4The current implementation has an SQL query interface.



5 Difficult Problems

Our method of automatically constructing an ontology is conceptually simple and allows
for efficient implementation. The ontologies generated by a prototype implementation have
proved the method’s practicality as well. However, there is much room for further improve-
ment of the quality of the constructed ontologies and our current effort is centered around
this issue. The main problem is how to distinguish concepts and non-concepts. We will
first illustrate with examples some of the difficulties one may encounter in implementing our
method, without getting into technical discussions.

One source of difficulty is structural ambiguity. A correct structural analysis of a phrase
is important because the decision whether to regard a certain sub-sequence of a phrase as
concept often depends on the syntactic structure. From the phrase image processing software,
for instance, we may get the concepts image, image processing and image processing software,
but not processing software. This is explained from the phrase structure. The correct analysis
is (1a), not (1b), i.e., “processing software” is not a constituent.

(1a) [[image processing] software]
(1b) [image [processing software]]
In case of phrases like low-temperature polysilicon TFT panel however, we may admit as

concept-terms all the subphrases shown below even though the phrase shares the same kind
of syntactic (“front-anchored”) structure as image processing software:

(2) TFT panel
polysilicon TFT panel
low-temperature polysilicon TFT panel

The next example involves a slightly different kind of problem, i.e., how to recognize
different phrases that refer to the same concept.

(3) quartz crystal oscillator
crystal quartz oscillator

The above two phrases refer to the same concept, and so do quartz crystal and crystal quartz
(although the latter is not easy for the system to decide without actually seeing both oc-
currences in the literature). On the other hand, neither electroluminescence color nor color
electroluminescence in example (4) is a concept despite the surface resemblance between ex-
amples (3) and (4).

(4) electroluminescence color display
color electroluminescence display



Proper attachment of adjectival modifiers is also important to avoid creating non-concepts.
For instance, we should not generate terms like organic display, relational management,
nmematic color or global display from the following phrases.

(5) organic EL display
relational database management
nmematic color LCD
global display market

The next set of examples illustrates yet another potential source of spurious concepts.

(6) flat panel display
touch panel display
plasma panel display

Although these phrases seem to suggest creating a super-class concept panel display, such a
concept would be controversial at best.

Syntactic structure disambiguation is a difficult problem itself, but errors can be made
even after disambiguation is successfully done. We need to rely on statistical analysis of
training corpora and tutoring by humans with sample “bracketing.” Thanks to new advance-
ments in empirical NLP and natural language learning techniques [Brill and Mooney 1997,
Cardie and Mooney 1999] however, we are optimistic that we will get substantial improve-
ments in the quality of the ontologies constructed.

Polysemic words present another kind of problem. For instance, ‘panel’ has several differ-
ent senses as indicated by “flat panel display” and “international advisory panel.” We expect
domain experts will easily detect cases where the same word is used with different senses.
We also expect that modification of ontologies for different subtrees depending on their sense
wouldn’t be very hard although it will require semantic analysis to a certain extent.

A validation of an ontology requires classification of a large set of objects. One may regard
this as another source of difficulty, especially considering that terminological inconsistencies
are common when document sources are diverse. However, we have not run into particularly
difficult cases in practice.

Finally, one should bear in mind that automatically constructed ontologies may be too
prolific and deficient at the same time. Excessively prolific ontologies could hinder domain
experts’ browsing and correction. We hope that tools and reasonable choice of seedwords and
initial training data should limit this risk, but we do not yet know what the characteristics of
an appropriate choice are. We need to run an extensive number of experiments with various
data sets in order to appropriately tune our algorithm and cut down overgeneration. Next,
automatically generated ontologies could be deficient since they rely on seedwords only. One
promising technique could be synonym learning as discussed in [Riloff and Shepherd 1997].

6 Incomplete and Imprecise Retrieval

When the breadth of coverage is large, it is unavoidable that precision suffers. In some sense,
having imprecision in retrieval is acceptable when it provides better recall. However, excessive



recall overwhelms the information seeker and makes answer hard to locate. In this section,
we discuss briefly how our ontologies provide a tradeoff between precision and recall.

Since the ontology is organized as hierarchies, inference based on inheritance is obtained
automatically following is-a paths. Let us consider again the “display ontology” we discussed
in section 4 (repeated below).

display
flat panel display
field emission display
diamond field emission display
*display panel
*display panel substrate

Suppose we receive a retrieval query for field emission display. All the database entries (e.g.,
document ID’s) linked to concepts that appear in the subtree rooted by field emission display
and are in an is-a relation to its parent node constitute the answer space. The answer space
would be {field emission display, diamond field emission display}.

Often, however, entries linked to an ancestor node of the queried concept are also relevant
to the query. That is, some of the database entries mapped to concept flat panel display may
contain answers to the field emission display- query. Similarly, entries mapped to a concept
that is in an assoc-with relation to the queried concept node may contain answers. (For
instance, if the queried concept is flat panel display, there is a chance some of the database
entries linked to concept display panel contains an answer.) Thus, if we take as answer space
only those database entries that are linked to the is—a nodes in the subtree of field emission
display, the answer may be incomplete. On the other hand, if we also return entries linked
to ancestor nodes of field emission display (as well as to the nodes connected by assoc-with
relations, if any), we may lose precision. So, there is a tradeoff with respect to precision and
completeness in what to include in the answer space, and our method is capable of allowing
the user to decide between the precision and completeness. The downward aggregation is
sound but not necessarily complete, while the upward and sideway aggregation may be closer
to completeness but less sound. A typical application might provide a GUI with samples
from each category and buttons to include the category in the result. A user then can decide
whether to include them or not.

7 Concluding Remarks

We reported here on an approach to the management of domain- and application-specific
knowledge specialization, namely, an approach to practical information representation and
retrieval that aspires to be efficient, adaptive, and domain independent, with respect to the
concepts encountered in textual information sources. The centerpiece of our method is a
dynamic ontology that is automatically constructed using natural language processing and
machine learning techniques. The method is based on detecting the relationship between
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linguistic features and simple ontology algebra based on inheritance hierarchy and set op-
erations. It is capable of composing knowledge from diverse sources; it is scalable in that
ontologies constructed by different groups can be merged, and expanded, without requiring
an a priori agreed-upon ontology.

The method requires minimal input: a small number of seedwords of high-level concepts
and POS-tagged, but otherwise unmarked, texts. We are also developing a web-sweeping
agent [Perry 1999] that will crawl on the web, collecting documents potentially relevant to
the task domain, which will then be piped to the concept-learner and ontology-builder.

The conception is not yet complete or fully debugged, but it is sufficiently far along to
have provided a basis for a start-up implementation. Our initial prototype implementation
has been successful. An internal MCC group, Global Technology Services (GTS), used our
technology to support their efforts to inform their subscribers of what is new in the world in
a series of technology focus points.
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